organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

3-[(E)-Benzylidene]indolin-2-one

Abdullah M. Asiri,^a[‡] Mohie E. M. Zayed,^a Seik Weng Ng^b and Edward R. T. Tiekink^b*

^aChemistry Department, Faculty of Science, King Abdulaziz University, PO Box 80203, Jeddah, Saudi Arabia, and ^bDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia Correspondence e-mail: edward.tiekink@gmail.com

Received 25 May 2012; accepted 30 May 2012

Key indicators: single-crystal X-ray study; T = 100 K; mean σ (C–C) = 0.002 Å; R factor = 0.038; wR factor = 0.107; data-to-parameter ratio = 15.6.

In the title indolin-2-one derivative, $C_{15}H_{11}NO$, the phenyl ring and the oxoindoline fused-ring system (r.m.s. deviation = 0.011 Å) are aligned at 48.52 (6)°. In the crystal, inversionrelated molecules form an N-H···O hydrogen-bonded dimer *via* an eight-membered {···HNCO}₂ synthon. The dimeric aggregates are linked into a three-dimensional architecture *via* C-H···O and $\pi-\pi$ interactions between the five- and sixmembered rings of the fused ring system, with an intercentroid distance of 3.4538 (8) Å.

Related literature

For the structure of the Z-isomer of the title compound, see: Milanesio *et al.* (2000). For background to related thiazoles, see: Badahdaha *et al.* (2009).

Experimental

Crystal data C₁₅H₁₁NO

 $M_r = 221.25$

Monoclinic, $P2_1/n$	Z = 4
a = 3.9/96 (3) A	Mo K α radiation
D = 22.2200 (19) A	$\mu = 0.09 \text{ mm}$ T = 100 K
C = 12.2484 (10) A $R = 05.027 (1)^{\circ}$	I = 100 K
p = 93.027 (1) $V = 1070.24 (15) Å^3$	0.30 × 0.20 × 0.10 IIIII
V = 1079.24 (13) A	
Data collection	
Bruker SMART APEX	2460 independent reflections
diffractometer	2153 reflections with $I > 2\sigma(I)$
6831 measured reflections	$R_{\rm int} = 0.023$
Refinement	
$R[F^2 > 2\sigma(F^2)] = 0.038$	H atoms treated by a mixture of
$wR(F^2) = 0.107$	independent and constrained
S = 1.03	refinement
2460 reflections	$\Delta \rho_{\rm max} = 0.27 \ {\rm e} \ {\rm \AA}^{-3}$
158 parameters	$\Delta \rho_{\rm min} = -0.26 \text{ e } \text{\AA}^{-3}$

Table 1 Hydrogen-bond geometry (Å, °).

1 restraint

$D-\mathrm{H}\cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$N1-H1N\cdotsO1^{i}$ C13-H13···O1 ⁱⁱ	0.87 (1) 0.95	1.98 (1) 2.57	2.846 (1) 3.2535 (15)	172 (2) 129
C	. 1 . 1	1. (2)	1 . 3 1	

Symmetry codes: (i) -x + 1, -y + 1, -z + 1; (ii) $x + \frac{1}{2}$, $-y + \frac{3}{2}$, $z - \frac{1}{2}$.

Data collection: *APEX2* (Bruker, 2009); cell refinement: *SAINT* (Bruker, 2009); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *ORTEP-3* (Farrugia, 1997) and *DIAMOND* (Brandenburg, 2006); software used to prepare material for publication: *publCIF* (Westrip, 2010).

The authors are grateful to King Abdulaziz University for providing research facilities. We also thank the Ministry of Higher Education (Malaysia) for funding structural studies through the High-Impact Research Scheme (grant No. UM.C/HIR/MOHE/SC/12).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: MW2072).

References

Badahdaha, K. O., Asiri, A. M. & Ng, S. W. (2009). Acta Cryst. E65, 0759. Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany. Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.

Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.

Milanesio, M., Viterbo, D., Albini, A., Fasani, E., Bianchi, R. & Barzaghi, M. (2000). J. Org. Chem. 65, 3416–3425.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.

[‡] Additional correspondence author, e-mail: aasiri2@kau.edu.sa.

supplementary materials

Acta Cryst. (2012). E68, o2020 [doi:10.1107/S1600536812024762]

3-[(E)-Benzylidene]indolin-2-one

Abdullah M. Asiri, Mohie E. M. Zayed, Seik Weng Ng and Edward R. T. Tiekink

Comment

The title compound (I) was isolated as a side-product in the attempted synthesis of thiazole derivatives (Badahdaha *et al.*, 2009) of interest owing to putative biological activity. The indolin-2-onyl fused-ring in (I), Fig. 1, is planar with the r.m.s. deviation being 0.011 Å; the O1 and C9 atoms lie -0.016 (1) and 0.089 (1) Å out of the plane, respectively. The phenyl group is twisted out of this plane, forming a dihedral angle of 48.52 (6)°. The conformation about the C7=C9 bond [1.3439 (16) Å] is *E*; the structure of the *Z*-isomer is known (Milanesio *et al.*, 2000).

In the crystal packing, inversion related molecules are connected into a dimer *via* N—H···O hydrogen bonds, Fig. 2 and Table 1. Molecules are linked into undulating layers in the *bc* plane *via* C—H···O interactions, Table 1, and are linked along the *a* axis *via* π – π interactions occurring between the five- and six-membered rings of the indolin-2-onyl fused ring system [ring centroid(N1,C1, C6–C7)···centroid(C1–C6)ⁱ = 3.4538 (8) Å, angle of inclination = 1.15 (6)° for i: -1 + *x*, *y*, *z*], Fig. 3.

Experimental

The title compound, an unexpected product, was isolated as a side-product from a reaction between 2-(4-nitrobenzylidene)hydrazinecarbothioamide, triethylamine and *N*-phenyl-2-oxopropanehydrazonoyl chloride in ethanol solution; m.p. 512 K.

Refinement

Carbon-bound H atoms were placed in calculated positions [C—H = 0.95 Å, $U_{iso}(H) = 1.2U_{eq}(C)$] and were included in the refinement in the riding model approximation. The N-bound H atom was located in a difference Fourier map and was refined with a distance restraint of N—H = 0.86 (1) Å; the U_{iso} value was refined.

Computing details

Data collection: *APEX2* (Bruker, 2009); cell refinement: *SAINT* (Bruker, 2009); data reduction: *SAINT* (Bruker, 2009); program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *ORTEP-3* (Farrugia, 1997) and *DIAMOND* (Brandenburg, 2006); software used to prepare material for publication: *publCIF* (Westrip, 2010).

Figure 1

The molecular structure of (I) showing the atom-labelling scheme and displacement ellipsoids at the 50% probability level.

Figure 2

A view of the centrosymmetric dimer in (I) mediated by N-H…O hydrogen bonds shown as blue dashed lines.

Figure 3

A view in projection down the *a* axis of the unit-cell contents of (I), the direction of the stacking of supramolecular layers. The N—H···O, C—H···O and π — π interactions are shown as blue, orange and purple dashed lines, respectively.

3-[(*E*)-Benzylidene]indolin-2-one

Crystal data	
C ₁₅ H ₁₁ NO	$V = 1079.24 (15) \text{ Å}^3$
$M_r = 221.25$	Z = 4
Monoclinic, $P2_1/n$	F(000) = 464
Hall symbol: -P 2yn	$D_{\rm x} = 1.362 {\rm Mg} {\rm m}^{-3}$
a = 3.9796 (3) Å	Mo Ka radiation, $\lambda = 0.71073$ Å
b = 22.2266 (19) Å	Cell parameters from 3166 reflections
c = 12.2484 (10) Å	$\theta = 2.5 - 28.3^{\circ}$
$\beta = 95.027 (1)^{\circ}$	$\mu = 0.09 \text{ mm}^{-1}$

T = 100 KPrism, orange

Data collection

Bruker SMART APEX diffractometer	2153 reflections with $I > 2\sigma(I)$ $R_{\rm int} = 0.023$
Radiation source: fine-focus sealed tube	$\theta_{\rm max} = 27.5^{\circ}, \theta_{\rm min} = 1.8^{\circ}$
Graphite monochromator	$h = -3 \rightarrow 5$
ωscans	$k = -28 \rightarrow 28$
6831 measured reflections	$l = -15 \rightarrow 15$
2460 independent reflections	
Refinement	
Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.038$	Hydrogen site location: inferred from
$wR(F^2) = 0.107$	neighbouring sites
S = 1.03	H atoms treated by a mixture of independent
2460 reflections	and constrained refinement
158 parameters	$w = 1/[\sigma^2(F_0^2) + (0.0633P)^2 + 0.2809P]$
1 restraint	where $P = (F_0^2 + 2F_c^2)/3$
Primary atom site location: structure-invariant	$(\Delta/\sigma)_{\rm max} = 0.001$
direct methods	$\Delta \rho_{\rm max} = 0.27 \ {\rm e} \ {\rm \AA}^{-3}$
	$\Delta \rho_{\rm min} = -0.26 \text{ e} \text{ Å}^{-3}$
	,

 $0.30 \times 0.20 \times 0.10 \text{ mm}$

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
01	0.5372 (2)	0.58258 (4)	0.53379 (7)	0.0236 (2)	
N1	0.7366 (3)	0.52725 (4)	0.39388 (8)	0.0183 (2)	
H1N	0.668 (4)	0.4920 (5)	0.4133 (12)	0.032 (4)*	
C1	0.8893 (3)	0.53924 (5)	0.29780 (9)	0.0167 (2)	
C2	0.9905 (3)	0.49792 (5)	0.22291 (10)	0.0194 (3)	
H2	0.9556	0.4560	0.2321	0.023*	
C3	1.1456 (3)	0.52014 (6)	0.13341 (10)	0.0211 (3)	
H3	1.2194	0.4929	0.0808	0.025*	
C4	1.1938 (3)	0.58149 (6)	0.11990 (10)	0.0207 (3)	
H4	1.2987	0.5956	0.0580	0.025*	
C5	1.0897 (3)	0.62256 (5)	0.19619 (9)	0.0184 (2)	
H5	1.1241	0.6645	0.1866	0.022*	
C6	0.9350 (3)	0.60162 (5)	0.28646 (9)	0.0159 (2)	
C7	0.8052 (3)	0.62991 (5)	0.38267 (9)	0.0167 (2)	
C8	0.6761 (3)	0.57888 (5)	0.44818 (9)	0.0180 (3)	
C9	0.7925 (3)	0.68631 (5)	0.42166 (9)	0.0176 (2)	
H9	0.7175	0.6901	0.4929	0.021*	
C10	0.8793 (3)	0.74284 (5)	0.36866 (9)	0.0167 (2)	
C11	0.7759 (3)	0.75418 (5)	0.25856 (9)	0.0179 (2)	
H11	0.6540	0.7243	0.2161	0.021*	
C12	0.8496 (3)	0.80862 (5)	0.21070 (10)	0.0194 (3)	
H12	0.7756	0.8160	0.1360	0.023*	
C13	1.0311 (3)	0.85235 (5)	0.27155 (10)	0.0199 (3)	
H13	1.0862	0.8892	0.2382	0.024*	

supplementary materials

C14	1.1317 (3)	0.84202 (5)	0.38124 (10)	0.0203 (3)	
H14	1.2557	0.8719	0.4231	0.024*	
C15	1.0516 (3)	0.78813 (5)	0.43000 (9)	0.0191 (3)	
H15	1.1145	0.7819	0.5058	0.023*	

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
01	0.0347 (5)	0.0183 (4)	0.0189 (4)	-0.0028 (4)	0.0088 (4)	0.0011 (3)
N1	0.0234 (5)	0.0130 (5)	0.0186 (5)	-0.0015 (4)	0.0024 (4)	0.0020 (4)
C1	0.0150 (5)	0.0178 (6)	0.0167 (5)	0.0001 (4)	-0.0015 (4)	0.0013 (4)
C2	0.0178 (5)	0.0177 (6)	0.0222 (6)	0.0018 (4)	-0.0010 (4)	-0.0010 (4)
C3	0.0191 (5)	0.0246 (6)	0.0193 (6)	0.0039 (5)	0.0001 (4)	-0.0044 (5)
C4	0.0179 (5)	0.0265 (6)	0.0179 (6)	0.0008 (5)	0.0019 (4)	0.0008 (5)
C5	0.0164 (5)	0.0190 (6)	0.0196 (6)	-0.0018 (4)	0.0008 (4)	0.0016 (4)
C6	0.0146 (5)	0.0163 (5)	0.0163 (5)	-0.0004 (4)	-0.0017 (4)	-0.0002 (4)
C7	0.0177 (5)	0.0170 (6)	0.0153 (5)	-0.0017 (4)	0.0004 (4)	0.0025 (4)
C8	0.0209 (6)	0.0157 (6)	0.0171 (5)	-0.0015 (4)	-0.0006 (4)	0.0016 (4)
C9	0.0200 (5)	0.0180 (6)	0.0148 (5)	-0.0005 (4)	0.0020 (4)	0.0006 (4)
C10	0.0172 (5)	0.0146 (5)	0.0188 (5)	0.0008 (4)	0.0046 (4)	-0.0005 (4)
C11	0.0183 (5)	0.0164 (5)	0.0189 (6)	-0.0009 (4)	0.0018 (4)	-0.0009 (4)
C12	0.0200 (6)	0.0202 (6)	0.0181 (5)	0.0015 (4)	0.0032 (4)	0.0022 (4)
C13	0.0196 (6)	0.0151 (5)	0.0255 (6)	-0.0002 (4)	0.0058 (4)	0.0028 (4)
C14	0.0214 (6)	0.0152 (5)	0.0244 (6)	-0.0020 (4)	0.0025 (4)	-0.0038 (4)
C15	0.0224 (6)	0.0182 (6)	0.0167 (5)	0.0015 (4)	0.0018 (4)	-0.0013 (4)

Geometric parameters (Å, °)

O1—C8	1.2302 (14)	С7—С9	1.3439 (16)	
N1—C8	1.3585 (15)	C7—C8	1.5054 (15)	
N1-C1	1.3968 (14)	C9—C10	1.4693 (15)	
N1—H1N	0.87(1)	С9—Н9	0.9500	
C1—C2	1.3825 (16)	C10—C11	1.3978 (16)	
C1—C6	1.4068 (16)	C10—C15	1.3993 (16)	
C2—C3	1.3946 (17)	C11—C12	1.3871 (16)	
С2—Н2	0.9500	C11—H11	0.9500	
C3—C4	1.3890 (18)	C12—C13	1.3884 (17)	
С3—Н3	0.9500	C12—H12	0.9500	
C4—C5	1.3950 (16)	C13—C14	1.3871 (17)	
C4—H4	0.9500	C13—H13	0.9500	
C5—C6	1.3919 (15)	C14—C15	1.3881 (16)	
С5—Н5	0.9500	C14—H14	0.9500	
C6—C7	1.4689 (15)	C15—H15	0.9500	
C8—N1—C1	111.10 (9)	O1—C8—N1	125.86 (10)	
C8—N1—H1N	123.7 (11)	O1—C8—C7	127.13 (10)	
C1—N1—H1N	124.9 (11)	N1—C8—C7	106.99 (10)	
C2C1N1	127.28 (11)	C7—C9—C10	128.54 (10)	
C2C1C6	122.79 (11)	С7—С9—Н9	115.7	
N1—C1—C6	109.93 (10)	С10—С9—Н9	115.7	

C1—C2—C3	117.44 (11)	C11—C10—C15	118.50 (10)
C1—C2—H2	121.3	С11—С10—С9	121.32 (10)
С3—С2—Н2	121.3	C15—C10—C9	120.08 (10)
C4—C3—C2	121.10 (11)	C12—C11—C10	120.65 (11)
С4—С3—Н3	119.4	C12—C11—H11	119.7
С2—С3—Н3	119.4	C10-C11-H11	119.7
C3—C4—C5	120.69 (11)	C13—C12—C11	120.20 (11)
C3—C4—H4	119.7	C13—C12—H12	119.9
C5—C4—H4	119.7	C11—C12—H12	119.9
C4—C5—C6	119.42 (11)	C14—C13—C12	119.78 (11)
C4—C5—H5	120.3	C14—C13—H13	120.1
С6—С5—Н5	120.3	С12—С13—Н13	120.1
C5—C6—C1	118.55 (10)	C13—C14—C15	120.12 (11)
C5—C6—C7	134.85 (11)	C13—C14—H14	119.9
C1—C6—C7	106.56 (10)	C15—C14—H14	119.9
C9—C7—C6	135.33 (11)	C14—C15—C10	120.67 (11)
С9—С7—С8	119.22 (10)	C14—C15—H15	119.7
C6—C7—C8	105.40 (9)	C10—C15—H15	119.7
C8—N1—C1—C2	179.20 (11)	C1—N1—C8—C7	-0.80 (13)
C8—N1—C1—C6	0.09 (13)	C9—C7—C8—O1	4.54 (18)
N1—C1—C2—C3	-178.59 (11)	C6—C7—C8—O1	-177.79 (11)
C6—C1—C2—C3	0.41 (16)	C9—C7—C8—N1	-176.49 (10)
C1—C2—C3—C4	-0.48 (17)	C6—C7—C8—N1	1.18 (12)
C2—C3—C4—C5	0.40 (17)	C6—C7—C9—C10	8.2 (2)
C3—C4—C5—C6	-0.23 (17)	C8—C7—C9—C10	-175.00 (11)
C4—C5—C6—C1	0.15 (16)	C7—C9—C10—C11	43.93 (18)
C4—C5—C6—C7	177.75 (11)	C7—C9—C10—C15	-139.89 (13)
C2-C1-C6-C5	-0.25 (16)	C15—C10—C11—C12	1.47 (17)
N1-C1-C6-C5	178.91 (10)	C9-C10-C11-C12	177.71 (10)
C2-C1-C6-C7	-178.47 (10)	C10-C11-C12-C13	0.77 (17)
N1—C1—C6—C7	0.68 (12)	C11—C12—C13—C14	-1.57 (17)
C5—C6—C7—C9	-1.8 (2)	C12—C13—C14—C15	0.09 (18)
C1—C6—C7—C9	175.99 (13)	C13—C14—C15—C10	2.20 (18)
C5—C6—C7—C8	-178.91 (12)	C11-C10-C15-C14	-2.95 (17)
C1—C6—C7—C8	1 11 (11)	C0 C10 C15 C14	170.24(10)
	-1.11 (11)	C9-C10-C13-C14	-1/9.24(10)

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	Н…А	$D \cdots A$	<i>D</i> —H··· <i>A</i>
N1—H1N···O1 ⁱ	0.87 (1)	1.98 (1)	2.846(1)	172 (2)
С13—Н13…О1 ^{іі}	0.95	2.57	3.2535 (15)	129

Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) x+1/2, -y+3/2, z-1/2.